- ax.flatten(): Transform
n*m to 1*nm 1-D Array
fig, ax = plt.subplots(nrows=2,ncols=2,sharex='all',sharey='all')
ax = ax.flatten()
for i in range(4):
img = image[i].reshape(28, 28)
ax[i].imshow(img, cmap='Greys', interpolation='nearest')
# ax[i] is available
fig, ax = plt.subplots(nrows=2,ncols=2,sharex='all',sharey='all')
for i in range(4):
img = image[i].reshape(28, 28)
ax[0, 0].imshow(img, cmap='Greys', interpolation='nearest')
ax[0, 1].imshow(img, cmap='Greys', interpolation='nearest')
ax[1, 0].imshow(img, cmap='Greys', interpolation='nearest')
ax[1, 1].imshow(img, cmap='Greys', interpolation='nearest')
# ax[i] is unavailable
- Convolutional Neural Networks
- We often use
Flatten, converting matrice to vectors.
- After flattening, then feed the vectors to
Fully Connected Layers.
-
CNN -> Pooling -> CNN -> Pooling...-> Flatten -> Fully Connected Layers -> Softmax -> Probabilities